- MILLS, O. S. & ROLLETT, J. S. (1960). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. London: Pergamon Press.
- MORIMOTO, H. & UYEDA, R. (1963). Acta Cryst. 16, 1107.
- MCWEENY, R. (1954). Acta Cryst. 7, 180.
- O'CONNELL, A. M., RAE, A. I. M. & MASLEN, E. N. (1966). Acta Cryst. 21, 208.
- ONDIK, H. & SMITH, D. (1962). In International Tables for X-ray Crystallography. Vol. III, p. 257. Birmingham: Kynoch Press.
- RAE, A. I. M. & MASLEN, E. N. (1962). Acta Cryst. 15, 1285.
- SASS, R. L. (1960). Acta Cryst. 13, 320.

SAUNDERSON, C. (1965). Private communication.

- SILVERMAN, J. & YANNONI, N. F. (1965). Acta Cryst. 18, 756.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). A.C.A. Meeting, Suffern. Paper A5.
- STOICHEFF, B. P. (1962). Tetrahedron, 17, 135.
- SUTHERLAND, H. H. & YOUNG, D. W. (1963). Acta Cryst. 16, 897.
- SUTTON, L. E. (1958). *Tables of Interatomic Distances and Configurations in Molecules and Ions*. Special Publication No. 11. London: The Chemical Society.
- WALLWORK, S. C. (1962). Acta Cryst. 15, 758.

Acta Cryst. (1967). 22, 228

Crystal, Molecular and Electronic Structure of 1,1-Diaryl-2-halogenoethylenes. I. 2-Bromo-1,1-di-*p*-tolylethylene

BY G. L. CASALONE, C. MARIANI, A. MUGNOLI AND M. SIMONETTA

Institute of Physical Chemistry, University of Milan, Milan, Italy

(Received 23 May 1966)

The crystal structure of 2-bromo-1,1-di-*p*-tolylethylene, $C_{16}H_{15}Br$, at room temperature, has been determined by three-dimensional methods, including anisotropic refinement by full-matrix least-squares calculations (final *R* value, 9.7%). There are four formula units in the orthorhombic cell, a = 16.89, b = 13.07, c = 6.26 Å, with space group $P2_{12}_{12}_{12}_{12}$. In the molecule the atoms are distributed on three planes: the ethylene reference plane and the two tolyl rings which are rotated by 24.4° (*trans* to Br) and 67.9° (*cis* to Br). Bond lengths and angles are in the normal range; the C-Br distance is 1.87 Å. Bond angles and distances in the isolated molecule and in 'model' crystals were calculated by semitheoretical methods and the correlation with experimental values is discussed.

Introduction

It is known that 1,1-diaryl-2-halogenoethylenes can react with sodium ethoxide following two different paths leading to nucleophilic substitution and to a Fritsch rearrangement (Beltrame & Favini, 1963; Beltrame, Carrà, Macchi & Simonetta, 1964). For the latter reaction, a geometrical and electronic model of the activated complex has been suggested (Simonetta & Carrà, 1963) in which the aryl group trans to the halogen lies in a plane perpendicular to the ethylenic bond. Since the geometry of the substrate might be a relevant factor in determining the relative amounts of the two possible reactions with the base, an investigation was undertaken of the crystal, molecular and electronic structure of some diarylethylenes, including 2-bromo-1,1-di-*p*-tolylethylene, 2-chloro-1,1-di-*p*-tolylethylene, 1,1-diphenylethylene and 2-bromo-1,1-diphenylprop-1-ene.

In this paper the results for 2-bromo-1,1-di-*p*-tolylethylene are given. The geometry of the molecule, as determined by X-ray diffraction, has been compared with the geometry of the isolated molecule calculated by semi-empirical methods and the interrelations between the two have been discussed.

Experimental

Crystal data

2-Bromo-1,1-di-*p*-tolylethylene, m.p. 52°C, crystallizes from isopropyl alcohol in transparent plates. The unit-cell dimensions were determined from zero-layer Weissenberg films about the *b* and *c* axes, with Cu $K\alpha$ radiation. The crystal data given below have already been published in a preliminary communication (Mariani, Mugnoli & Casalone, 1965).

2-Bromo-1,1-di-*p*-tolylethylene

 $C_{16}H_{15}Br$ F.W. 287.2

Orthorhombic, $a = 16.89 \pm 0.01$, $b = 13.07 \pm 0.01$, $c = 6.26 \pm 0.01$ Å, with $\lambda(\text{Cu } K\alpha_1) = 1.5405$, $\lambda(\text{Cu } K\alpha_2) = 1.5443$, $\lambda(\text{Cu } K\alpha) = 1.5418$ Å;

V=1381.9 Å³; $D_m=1.37$ g.cm⁻³ (by flotation); Z=4; $D_c=1.38$ g.cm⁻³; F(C00)=584; Absorption coefficient for Cu K α radiation, 39.1 cm⁻¹. Space group $P2_12_12_1$ (no. 19), from systematic absences: h00 if h=2n+1, 0k0if k=2n+1, 00l if l=2n+1.

Intensity measurements

The X-ray intensities were estimated visually from sets of multiple-film equi-inclination Weissenberg

photographs taken at room temperature about the caxis (6 layers) and the b axis (4 layers). Two crystals were used, with cross sections respectively of $0.16 \times$ 0.34 mm^2 and of $0.15 \times 0.15 \text{ mm}^2$. From a total number of 1835 possible reflexions, with Cu $K\alpha$ radiation, 1705 were collected, of which 505 were too low to be observed. The intensities were scaled together within the same layer by a method similar to the one described by Rae (1965) and then corrected for Lorentz, polarization and spot-size (Phillips, 1954) factors. An evaluation of the σ for each individual observation was obtained from a statistical analysis (Gramaccioli & Mariani, 1965). The data belonging to different layers were scaled together according to the method proposed by Rollett & Sparks (1960), modified in order to account for the dependence of the weights upon the final scale factors (Hamilton, Rollett & Sparks, 1965; Duchamp, 1964). 242 reflexions were measured about both axes. No absorption or extinction corrections were applied.

Atomic scattering factors were calculated by means of analytical expressions following Cromer & Waber (1965) for bromine and carbon, and Forsyth & Wells (1959) for hydrogen atoms.

All the calculations except the least-squares refinement were carried out on an IBM 1620-20K electronic computer. Structure factors and Fourier syntheses were calculated by the programs of Albano, Bellon & Pompa (1963) and Pompa, Albano, Bellon & Scatturin (1963). The intensity scaling program was written by Gramaccioli and Mariani, who also adapted and partially modified the least-squares ORFLS program of Busing, Martin & Levy (1962) for an IBM 7040 computer. All the programs for the theoretical calculations were written by one of us (C.M.).

Structure determination and refinement

A preliminary two-dimensional investigation by Patterson and Fourier methods on the (hk0) and the (h0l)projections (Mariani, Mugnoli & Casalone, 1965) gave a set of atomic coordinates and isotropic thermal factors, used as a starting point for the refinement. After two cycles of differential Fourier synthesis, and one three-dimensional difference synthesis calculation, final refinement was achieved by some cycles of full-matrix least-squares, using the program ORFLS written by Busing, Martin & Levy (1962). During these last cycles, anisotropic temperature factors were adopted for each atom in the structure, except for hydrogen atoms. These latter were omitted from the least-squares refinement, being introduced only in the structure factor calculations. Hydrogen atoms bonded to an sp^2 carbon atom were assumed to lie on the line bisecting the angle

Table 1. Final coordinates with standard deviations $(\times 10^4)$

	x/a	y/b	z/c		x/a	y/b	z/c
Br	1172 (1)	2463 (1)	3738 (2)	C(13)	1942 (6)	5919 (7)	977 (20)
C(1)	464 (7)	2834 (8) ·	1574 (22)	C(14)	1478 (6)	5104 (9)	254 (19)
$\tilde{C}(2)$	407 (6)	3790 (7)	799 (16)	C(15)	- 1847 (8)	4779 (12)	- 5898 (24)
Č(3)	-177(6)	4015 (7)	- 941 (15)	C(16)	2341 (9)	7162 (9)	3853 (24)
Č(4)	- 445 (7)	3266 (7)	- 2350 (19)	H(1)	82	2251	915
Č(5)	- 996 (7)	3518 (8)	- 3939 (18)	H(2)	- 228	2491	-2218
C(6)	- 1261 (6)	4521 (10)	-4162(22)	H(3)	- 1216	2931	- 4997
C(7)	- 987 (6)	5272 (9)	- 2767 (20)	H(4)	-1190	6051	- 2933
Č(8)	- 449 (5)	5019 (7)	-1151 (17)	H(5)	- 243	5602	- 62
Č(9)	913 (6)	4674 (7)	1602 (19)	H(6)	370	4702	4710
C(10)	808 (7)	5042 (9)	3672 (18)	H(7)	1196	6146	5994
C(11)	1274 (8)	5855 (8)	4393 (22)	H(8)	2378	6259	- 65
C(12)	1840 (7)	6292 (7)	3049 (21)	H(9)	1557	4809	- 1343

Table 2. Thermal exponent coefficients (with e.s.d.'s)

bij as	given here are	defined by 2	$T = \exp[-10^{-4}($	$(b_{11}h^2 + b_{22}k^2 + b_{22}k^2)$	$b_{33}l^2 + 2b_{12}hk +$	$2b_{13}hl + 2b_{23}kl$
	<i>b</i> ₁₁	b22	b33	<i>b</i> ₁₂	<i>b</i> ₁₃	b23
Br	76 (1)	75 (1)	651 (6)	-3(1)	-5(2)	71 (2)
C(1)	55 (4)	65 (6)	571 (40)	-10 (4)	4 (12)	25 (14)
C(2)	48 (4)	47 (4)	419 (29)	-3 (3)	11 (9)	0 (10)
C(3)	40 (3)	62 (5)	347 (28)	-3 (4)	9 (8)	-15 (10)
C(4)	59 (5)	57 (6)	486 (34)	-9 (5)	30 (12)	-10 (12)
C(5)	58 (5)	71 (6)	503 (37)	-21 (5)	11 (12)	- 34 (14)
C(6)	41 (4)	90 (7)	426 (30)	-6 (5)	-21 (9)	-27 (14)
C(7)	36 (4)	75 (6)	484 (32)	6 (4)	-2 (9)	-49 (12)
C(8)	36 (3)	62 (5)	489 (33)	12 (3)	-6 (9)	-70 (12)
C(9)	39 (3)	51 (5)	419 (30)	-6(3)	8 (8)	22 (10)
C(10)) 44 (4)	84 (7)	418 (33)	-1 (4)	10 (9)	45 (14)
C(11) 72 (6)	51 (5)	456 (29)	10 (5)	-28 (12)	3 (11)
C(12	2) 57 (5)	48 (5)	565 (41)	8 (4)	-67 (12)	-11 (12)
C(13	3) 41 (4)	50 (5)	539 (37)	-7 (3)	-11 (10)	21 (12)
C(14	40 (3)	68 (7)	525 (36)	6 (4)	25 (10)	- 37 (13)
C(15	5) 69 (6)	125 (11)	459 (38)	-22 (7)	-13 (14)	-4 (18)
C(16	5) 77 (6)	65 (6)	646 (49)	-9 (5)	- 49 (16)	- 19 (16)

Table 3. Observed and calculated structure factors

Each group of four columns contains in order h, $10|F_o|$, $10|F_c|$, and the phase angle. A minus sign before the $10|F_o|$ value designates unobserved reflexion. Reflexions indicated by an asterisk were given zero weight in the least-squares refinement and excluded from the R calculation.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 6\\ 257\\ 294, 133\\ 257\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2557\\ 2577\\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 6 & 230 & 221 & 270 \\ 7 & 300 & 221 & 270 \\ 9 & 1036 & 100 & 900 \\ 10 & 1348 & 120 & 900 \\ 10 & 1348 & 120 & 900 \\ 11 & 567 & 532 & 2700 \\ 11 & 567 & 532 & 2700 \\ 11 & 57 & 532 & 2700 \\ 11 & 57 & 532 & 2700 \\ 11 & 57 & 532 & 2700 \\ 11 & 57 & 532 & 2700 \\ 11 & 57 & 532 & 2700 \\ 12 & 244 & 10 & 900 \\ 11 & 30 & 33 & 900 \\ 11 & -1 & 10 & 900 \\ 11 & -1 & 10 & 900 \\ 11 & -1 & 10 & 900 \\ 11 & -1 & 10 & 900 \\ 11 & -1 & 10 & 900 \\ 11 & -1 & 10 & 900 \\ 11 & -1 & 10 & 900 \\ 11 & -1 & 10 & 900 \\ 12 & -1 & -1 & 10 \\ 12 & -1 & -1 & 10 \\ 12 & -1 & -1 & 10 \\ 12 & -1 & -1 & 10 \\ 12 & -1 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 & -1 \\ 12 & -1 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 & -1 & -1 \\ 12 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2 & 130 & 167 & 1.5 \\ 3 & 365 & 308 & 90 \\ 4 & 6612 & 492 & 180 \\ 5 & 1126 & 90 \\ 6 & 1103 & 873 & 180 \\ 1126 & 90 & 67 \\ 1286 & 1013 & 271 \\ 101 & 114 & 281 \\ 101 & 113 & 180 \\ 11 & -38 & 3 & 270 \\ 111 & -38 & 3 & 270 \\ 112 & 1105 & 113 & 180 \\ 113 & -38 & 3 & 325 \\ 112 & 1105 & 113 & 180 \\ 113 & -38 & 3 & 325 \\ 114 & -38 & 3 & 325 \\ 116 & -33 & 325 & 270 \\ 116 & -33 & 325 & 270 \\ 117 & -33 & 325 & 270 \\ 118 & -24 & 19 & 0 \\ 117 & -27 & 420 \\ 118 & -24 & 19 & 0 \\ 117 & -27 & 420 \\ 118 & -24 & 19 & 0 \\ 118 & -24 & 19 & 0 \\ 118 & -24 & 19 & 0 \\ 118 & -24 & 19 & 0 \\ 118 & -24 & 19 & 0 \\ 205 & 227 & 220 \\ 118 & -24 & 220 \\ 120 & 220 & 180 \\ 118 & 443 & 0 \\ 114 & 443 & 0 \\ 114 & 443 & 0 \\ 114 & 443 & 0 \\ 114 & 443 & 0 \\ 114 & 443 & 0 \\ 113 & -35 & 448 \\ 113 & -35 & 448 \\ 158 & -370 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \hat{n} & \hat{i}_{16} & \hat{6}_{10} & \hat{1}_{10} \\ 9 & 132 & 125 & 99 \\ 10 & 116 & 113 & 295 \\ 11 & -24 & 122 & 1615 & 218 \\ 11 & -2 & -19 & 312 & 2570 & 118 \\ 12 & -2 & -19 & 312 & 2570 & 118 \\ 13 & -19 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 11 & -11 & 29 & 82 \\ 12 & -777 & 254 \\ 12 & -877 & 256 \\ 11 & -24 & 293 & 318 \\ 13 & -13 & 14 & 12 \\ 12 & -777 & 274 & 216 \\ 11 & 43 & 49 & 110 \\ 13 & -13 & 14 & 12 \\ 12 & 43 & 49 & 3110 \\ 13 & -13 & 14 & 14 \\ 11 & -13 & -13 & 14 & 12 \\ 11 & 43 & 49 & 2577 \\ 2 & 637 & 660 & 771 \\ 2 & 637 & 660 & 771 \\ 2 & 637 & 660 & 771 \\ 2 & 637 & 660 & 771 \\ 2 & 637 & 660 & 771 \\ 2 & 637 & 660 & 771 \\ 3 & -244 & 293 & 318 \\ 11 & 43 & 49 & 987 \\ 2 & 637 & 637 & 757 & 588 \\ 4 & -2542 & 300 & 99 & 776 \\ 5 & 757 & 558 & 324 & 998 \\ 4 & -2544 & 399 & 3766 \\ 4 & -2544 & 399 & 3766 \\ 4 & -2544 & 399 & 3766 \\ 4 & -2544 & 399 & 3766 \\ 4 & -2544 & 390 & 3766 \\ 4 & -2544 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} {}^{9} 6148_{$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} {}_{5} {}_{5} {}_{5} {}_{5} {}_{5} {}_{5} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{5} {}_{6} {}_{6} {}_{6} {}_{6} {}_{8} {$	$\begin{array}{c} > 6 & 6 \\ 10 & 20 \\ 7 & 215 \\$	9 5.7 5.10 25.0 111 -13 15 10 230 111 -13 15 15 26 111 -13 15 15 27 111 -13 15 15 27 111 -13 15 15 27 111 -13 15 15 27 111 -13 15 15 27 111 -23 17 27 27 111 -27 27 27 27 27 111 -27 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} b_{7} & 7 \\ 7 & 197 \\ 111 \\ 111 \\ 12 \\ 233 \\ 144 \\ 5 & 196 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 111 \\ 112 \\ 249 \\ 127 \\ 128 \\ 249 \\ 129 \\ 128 \\ 129 \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 & 3 & 3 \\ 1 & 1 & 1 & 5 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 7 \\ 1 & 1 & 2 & 7 \\ 1 & 1 & 2 & 7 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$

Table 3 (cont.)

					-)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 16 & -19 & 19 & 39 \\ 1716 & -16 & 3 & 324 \\ 1716 & 3 & 334 & 9173 \\ 1716 & 3 & 334 & 9173 \\ 1717 & 3 & 334 & 9173 \\ 1717 & 3 & 334 & 9173 \\ 1717 & 3 & 334 & 9173 \\ 1717 & 3 & 334 & 9173 \\ 1717 & 3 & 334 & 9173 \\ 1717 & 3 & 334 & 9173 \\ 1717 & 3 & 334 & 9173 \\ 1717 & 3 & 314346 \\ 1717 & 3 & 31446 \\ 1717 & 3 & 31466 \\ 1717 & 3 & 31466 \\ 171$	$ \begin{array}{c} $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 9 & 970 \\ -150 & 302 & 277 \\ -19 & 3063 & 215 & 279 \\ -19 & 3063 & 215 & 279 \\ -19 & 3063 & 215 & 279 \\ -19 & 3063 & 215 & 279 \\ -19 & 3063 & 215 & 279 \\ -19 & 3063 & 215 & 279 \\ -19 & 3063 & 215 & 279 \\ -19 & 307 & 19 & 227 \\ -19 & 307 & 19 & 227 \\ -19 & 310 & 215 & 299 \\ -10 & 111 & 215 & 215 & 202 \\ -111 & 111 & 115 & 215 & 215 & 202 \\ -111 & 111 & 115 & 215 & 215 & 202 \\ -111 & 111 & 115 & 215 & 215 & 202 \\ -111 & 111 & 115 & 215 & 215 & 202 \\ -111 & 111 & 115 & 215 & 215 & 202 & 222 \\ -111 & 111 & 115 & 215 & 215 & 202 & 222 & 224 \\ -111 & 111 & 115 & 115 & 120 & 223 & 223 & 244 \\ -111 & 112 & 111 & 114 & 115 & 215 & 215 & 222 & 222 & 224 \\ -111 & 112 & 111 & 115 & 115 & 115 & 124 \\ -111 & 211 & 214 & 115 & 115 & 115 & 124 \\ -111 & 211 & 214 & 115 & 115 & 115 & 215 \\ -111 & 211 & 214 & 256 & 757 & 507 & 756 & 126 & 277 \\ -111 & 211 & 214 & 115 & 115 & 115 & 124 \\ -111 & 211 & 214 & 115 & 115 & 115 \\ -111 & 211 & 214 & 115 & 115 & 115 \\ -111 & 211 & 214 & 115 & 115 & 115 \\ -111 & 211 & 214 & 214 & 114 & 115 \\ -111 & 211 & 214 & 214 & 114 & 112 \\ -111 & 211 & 214 & 214 & 114 & 114 \\ -111 & 211 & 214 & 214 & 114 & 114 \\ -111 & 211 & 214 & 214 & 114 & 114 \\ -111 & 211 & 214 & 214 & 114 & 114 \\ -111 & 211 & 214 & 214 & 114 & 114 \\ -111 & 211 & 214 & 214 & 214 & 214 & 214 \\ -111 & 211 & 214 & 214 & 214 & 214 & 214 \\$	$\begin{array}{c} 0 \\ + \\ 0 \\ - \\ 0 \\ + \\ 0 \\ - \\$	$\begin{array}{c} 1 & 8 & 5 \\ 0 & 1 & 0 & 0 \\ 1 & 0 &$	$\begin{array}{c} 0 & 6 & 6 & 9 & 168 \\ 0 & 1 & -38 & 14 & 179 & 98 \\ 0 & 1 & -38 & 14 & 179 & 98 \\ 1 & 2 & 3 & -38 & 14 & 179 & 98 \\ 1 & 2 & 3 & -38 & 14 & 179 & 98 \\ 1 & 2 & 3 & -38 & 14 & 179 & 98 \\ 1 & 2 & 3 & -38 & 14 & 179 & 98 \\ 1 & 2 & 3 & -38 & 14 & 179 & 188 \\ 1 & 2 & 3 & -38 & 14 & 179 & 188 \\ 1 & 2 & 3 & -38 & 14 & 179 & 188 \\ 1 & 2 & 3 & -38 & 14 & 179 & 188 \\ 1 & 2 & 3 & -38 & 14 & 179 & 188 \\ 1 & 2 & 3 & -38 & 14 & 179 & 188 \\ 1 & 2 & 3 & -38 & 170 & 188 & 188 & 128 & 128 \\ 1 & 2 & 3 & -38 & 170 & 188 & 128 & 128 & 128 & 128 \\ 1 & 2 & 3 & -38$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

between the two bonds from the same carbon atom, with carbon-hydrogen bond distances equal to 1.08 Å. The positions of the hydrogen atoms of the methyl groups were not determined.

The quantity minimized in the least-squares calculation was $\Sigma w(F_o - |kF_c|)^2$, the weights w being derived from the σ 's of each single observation, as determined in the data reduction process. After the final cycle, all the shifts were below the corresponding e.s.d. Unobserved reflexions were assigned a threshold value based on the lowest observable intensity, and included in the refinement only when $|kF_c|$ exceeded this value. The final R index is 9.7% for the observed reflexions.

Table 1 gives the final atomic coordinates with their e.s.d.'s. Anisotropic temperature factors with their e.s.d.'s are listed in Table 2. An isotropic temperature factor B=6 Å² was assigned to each hydrogen atom. The numbering of the atoms is included in Figs. 1 and 2. Structure factors based on the final parameters are compared with the observed structure amplitudes in Table 3. The average planes in the molecule were determined by the method of Schomaker, Waser, Marsh & Bergman (1959). The equations for the two tolyl planes, including the C(2) atom, are

$$0.7555X + 0.2006Y - 0.6237Z - 1.1981 = 0$$

and

$$0.6820X - 0.6500Y + 0.3352Z + 2.5835 = 0$$

for the ring *trans* and *cis* to the bromine atom respectively; X, Y, Z are coordinates in Å. The equation of

the plane of the molecular skeleton C(1), C(2), C(3), C(6), C(15), C(9), C(12), C(16) is

$$0.6904X - 0.2122Y - 0.6916Z + 0.9222 = 0.$$

In all the three cases, no distance exceeding 0.01 Å was found between any atom and the involved plane. The bromine atom is coplanar with the molecular skeleton within 0.012 Å.

Bond distances, bond angles and the averages of their e.s.d.'s (Cruickshank & Robertson, 1953; Darlow, 1960) are reported in Figs.1 and 2 respectively. All these values are uncorrected for librational effects. In Figs.1 and 2 the molecule is drawn referred to an orthogonal, right-handed coordinate system X'Y'Z' whose Y'Z' plane is the average plane of the molecular skeleton previously described. The origin is taken at the mass centre of the skeleton. Both the tolyl rings are rotated with respect to the molecular skeleton plane, the rotation angles being $\theta_1 = 24 \cdot 4^\circ$ and $\theta_2 = 67 \cdot 9^\circ$ for the ring *trans* and *cis* to the bromine atom respectively.

In Figs. 3 and 4 the packing in the crystal is viewed along the c and b axes respectively.

π -Electron, bending and steric repulsion energy calculations

The π -electron energy for the molecule with $\theta_1 = 5$, 15, 25, 35, 45° and $\theta_2 = 45$, 55, 65, 75, 85° was calculated by the Hückel molecular orbital (HMO) method. For the methyl groups the heteroatom model was used,

with $\alpha_{CH_3} = \alpha_C + 3.3\beta_0$ and $\beta_{C-CH_3} = 0.8\beta_0$ (Favini & Simonetta, 1963) where β_0 is the resonance integral for a carbon-carbon bond at a distance of 1.40 Å. As the σ -bond compression energy was neglected in this calculation, the standard value $\beta_0 = -20$ Kcal.mole⁻¹ was chosen. The parameters for bromine were $\alpha_{Br} = \alpha_C + \beta_0$

and $\beta_{C-Br} = 0.4\beta_0$ (Carrà, Raimondi & Simonetta, 1966; Streitwieser, 1962).

Calculations were performed for all the 25 θ_1 , θ_2 combinations by the ω technique, with $\omega = 0.625$, the ω value being chosen to give the quickest convergence. At each step of the calculation the bond orders n_{st}

Fig. 1. Bond lengths (Å) in the crystal. The average e.s.d. is 0.016 Å. In brackets, the heights (Å) of non-coplanar atoms are given, with respect to the average plane of the molecular skeleton (see text).

Fig. 2. Bond angles (°) in the crystal. The average e.s.d. is 1.0°. Both the tolyl rings are rotated with respect to the average plane of the molecular skeleton (see text).

were evaluated by the standard HMO formula for all bonds except C(2)–C(3) and C(2)–C(9). For these bonds n_{st} was taken as $\Sigma_i 2c_{si}c_{ti} \cos \theta_j$ (j=1,2; *i* runs over all the occupied orbitals). The C_{sp}^2 – C_{methy1} and C–Br distances were kept at the constant values of 1.51 Å (Keidel & Bauer, 1956) and 1.87 Å. This latter value is based on values found in the literature for vinyl bromide (Whiffen, 1958; Howe & Goldstein, 1957) and 1,2-dibromoethylene (Hugill, Coop & Sutton, 1938). The C_{sp}^2 – C_{sp}^2 distances were calculated from the bond orders with Coulson's formula (Coulson, 1939), as given by Moser (1953). The integral β_{C-C} was varied with the distance R in the following way

$$\beta(R) = \beta_0 \exp\left[2.683(1.40 - R)\right]$$
(1)

(Coulson & Golebiewski, 1961) for all the C–C bonds except C(2)–C(3) and C(2)–C(9). For these bonds the

value of β given by (1) was multiplied by $\cos \theta_j$. For each geometry the calculation was repeated to consistency of α 's and β 's in the second decimal, which corresponds to a consistency to the third decimal for distances. As the final values for all C-C distances in the two aromatic rings for all examples examined were in the range 1.395-1.405 Å, the two rings were assumed to be regular hexagons with a side of 1.40 Å.

At this stage four more degrees of freedom were added to our model: each of the angles φ_1 , φ_2 , φ_3 and φ_4 (Fig. 5), which lie in the plane of C(1), C(2), C(3), C(9), Br, and H(1), was allowed to assume one of four values, 115, 120, 125 or 130°. With the 25 possible combinations of torsion angles, this makes the total number of possible geometrical models to be considered 6400. For 972 of them bending and steric repulsion energies were calculated and added to the

Fig. 3. The crystal structure projected on (001).

Fig.4. The crystal structure projected on (010).

appropriate value of the π -electron energy to get a 'total energy' for the isolated molecule. The geometries for which the calculation was actually performed were chosen in such a way as to make possible the identification of the position of the minimum for the function $E = E(\theta_1, \theta_2, \varphi_1, \varphi_2, \varphi_3, \varphi_4)$.

The bending energy in the plane of bonds has been determined by the formula

$$E_{\text{bend}} = \frac{1}{2} \sum_{i=1}^{4} k_i (\varphi_i - \varphi_0)^2$$
(2)

where $\varphi_0 = 120^\circ$ and k is the force constant. The following values for the force constants were used: $k_1 = k_2 = 1.35 \cdot 10^{-11} \text{ erg.rad}^{-2}$ (Favini & Simonetta, 1963), $k_3 = 0.79 \cdot 10^{-11} \text{ erg.rad}^{-2}$ (Dowling, Puranik, Meister & Miller, 1957), $k_4 = 0.68 \cdot 10^{-11} \text{ erg.rad}^{-2}$ (Westheimer, 1956). The compression energy for pairs of atoms at distances smaller than the 'touching distance' was calculated by the formula

$$E_s = -0.721(r_0/r)^6 + 2.11 \cdot 10^4 \exp(-10.88r/r_0), (3)$$

where E_s in Kcal.mole⁻¹ is the interaction energy, r the actual distance and r_0 the 'touching distance', obtained by adding van der Waals atomic radii. The values of these radii have been taken from standard tables (Pauling, 1960) and corrected when the line joining the two atoms and the direction of the nearest bond make an angle smaller than 90° (Dostrovsky, Hughes & Ingold, 1946). In this calculation the methyl group was considered as a single atom with van der Waals radius equal to 2.0 Å. Equation (3) is an extension of the one given by Kitaygorodsky (1961). This was originally given to calculate carbon and hydrogen interactions and has been here adapted to include methyl groups and bromine atoms. For 12 of the 25 possible sets θ_1 and θ_2 the minimum of energy, with respect to φ_1, φ_2 , φ_3, φ_4 , is given in Table 4, the absolute minimum of energy being indicated by an asterisk. The corresponding molecular geometry is also given in Table 4.

However, in the crystal each molecule experiences the strain of the surrounding molecules which causes a distortion of the molecules so that the crystal reaches

Table 4. '*Total energy*' (Kcal.mole⁻¹) for the isolated molecule

The most stable conformation, indicated by an asterisk, has bond lengths C(1)-C(2)=1.35, C(2)-C(3)=1.48, C(2)-C(9)=1.52 Å.

θ_1	θ_2	φ_1	φ_2	φ_3	φ_4	Total energy
5	55	125	120	120	125	-674.15
15	45	125	120	125	120	- 673.44
15	55	125	120	120	120	-673.83
15	65	125	120	120	120	- 673.26
25	45	120	120	125	120	- 671.28
25	55	120	120	120	120	- 674·18*
25	65	120	120	120	120	- 673·27
25	75	120	120	120	120	-673.03
35	45	120	120	125	120	- 672.89
35	55	120	120	120	120	- 673.39
35	65	120	120	120	120	- 673.00
45	55	120	120	120	120	- 672.55

the minimum of free energy. We know from X-ray data the position and orientation of the real molecules in the crystal and we put our model molecules in the same places. Considering a reference molecule, we make the C(2) atom, the C(1)–C(2) axis and the C(1), C(2), C(3), C(9) plane of the model coincident with the same atom, axis and plane of a real molecule in the crystal. We then calculate the coordinates of all the atoms in the model molecule, and by symmetry operations we can also get the coordinates of the atoms of all the model molecules in the crystal. We assume that the thermal energy and the entropy of the real crystal and of crystals made from any one of our model molecules are approximately the same. Also the attractive van der Waals forces are about the same, so what we need to do to find the theoretical geometry of the molecules in the crystal is to add to the 'total energy' of the isolated molecule the repulsion energy from the surroundings and then to find the minimum.

We used again formula (3), this time without correction of the van der Waals radii for the angular distance from the nearest bond. This simplification was made necessary by the need of keeping the program of the calculation to a size that the computer could accept and was justified by the fact that, in general, the direction from an atom of the reference molecule to an atom in surrounding molecules makes an angle larger than 90° with the direction of the nearest bond. We made first a trial calculation including all molecules for which C(2) lay within a sphere of radius 20Å centered on C(2) of the reference molecule. It was recognized that most of the molecules had all the atoms at distances larger than the 'touching distance' with any of the atoms in the reference molecule. It was seen that the appropriate radius for the sphere to include all the molecules between which repulsion may exist was 10 Å, and ten surrounding molecules were partially inside this sphere. This calculation however could not be performed for all the geometries we had considered before. We kept $\varphi_1 = \varphi_4 = 120^\circ$ and allowed for φ_2 and φ_3 the 120 and 125° values. For the four possible combinations of these φ_i values, the same θ_1 , θ_2 combinations as before were considered and the 'total energies' for the model molecule in the crystal were calculated. The more interesting results are summarized in Fig.6 and Table 5. In Table 5, the approximate geometry corresponding to the minimum calculated energy of the molecule in its crystalline environment is given.

Fig. 5. Degrees of freedom allowed for the model molecule.

 Table 5. Minimum energy geometries

 in the model molecule after packing

Angles are in degrees and energy in Kcal.mole⁻¹ (see Fig.6). For the most stable conditions (case A) the bond distances are C(1)-C(2)=1.35, C(2)-C(3)=1.48, C(2)-C(9)=1.53 Å.

θ_1	θ_2	φ_1	φ_2	φ_3	φ_4	Energy	Case
25	69	120	120	120	120	-673.13	Α
25	69	120	120	125	120	-672.62	В
25	65	120	125	120	120	-673.08	С
25	65	120	125	125	120	-672.57	D

Discussion

The crystal structure of the molecule reveals the existence of three planes containing the two tolyl groups and the ethylenic group. The e.s.d.'s of the bond lengths and bond angles are probably underestimated, owing to the fact that the absorption correction was not allowed for. It seems that this effect is partially compensated by the values assumed by the thermal parameters. In any event, the thermal motion in the crystal appears to be very large, especially for the bromine atom and the two methyl groups. The carbon-bromine, the ethylenic and the two C_{sp}^2 - C_{methyl} bond distances are in the expected range. The C(2)-C(3) and C(2)-C(9) bond lengths also show normal values; the difference between them, even if scarcely significant, is in

Fig. 6. 'Total energy' of the model molecule after packing (see Table 5).

the correct sense, considering the different amount of rotation of the connected ring with respect to the ethylenic plane. The two dihedral angles are 24.4 and 67.9° (see Fig. 2).

The φ_2 and φ_3 angles are larger, at a 3σ level, than 120°, while φ_1 is not significantly different from 120°. The φ_4 angle has not been determined experimentally. No non-bonded distances significantly smaller than the corresponding 'touching distance' were found. On comparison with experimental values, the configuration of maximum stability for the isolated molecule (Table 4) shows a nice agreement of C-C bond lengths and φ_i angles; the θ_1 angle is also very close but the calculated θ_2 angle is significantly smaller than the observed one. A possible explanation of this discrepancy might be the interaction with neighbour molecules after packing in the crystal. This point was checked in the calculation of the energy of a crystal made of model molecules. The allowed degrees of freedom were chosen so that the energy needed for distortion is a minimum. The result is in good agreement with experiment (see Table 5); there is an increase of the calculated θ_2 angle to 69° with all the φ_i angles equal to 120° (case A), or to 65° with an increase of the φ_2 angle to 125° (case C). This suggest that the minimum lies between $\theta_2 = 65^{\circ}$ and 69°, with φ_2 between 120° and 125°.

The constancy of θ_1 in the isolated molecule and all the model crystals is particularly significant (see also Simonetta & Carrà, 1963). The agreement must not be overestimated owing to the many assumptions and approximations involved in the method of calculation and to the fact that small differences in energy are dealt with. There is no doubt, however, that the packing is responsible for the disagreement between the isolated and the real molecule geometries; we may have some confidence that the magnitude of the distortion due to packing is correct and that the geometry given for the isolated molecule can be considered calculated with a good approximation.

The work has been partially supported by the Consiglio Nazionale delle Ricerche.

References

- Albano, V., Bellon, P. L. & Pompa, F. (1963). *Ric. Sci.* 33 (II-A), 285.
- BELTRAME, P., CARRÀ, S., MACCHI, P. & SIMONETTA, M. (1964). J. Chem. Soc. p. 4386.
- BELTRAME, P. & FAVINI, G. (1963). Gazz. chim. Ital. 93, 757.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, U.S. Atomic Energy Commission Publication ORNL-TM-305.
- CARRÀ, S., RAIMONDI, M. & SIMONETTA, M. (1966). Tetrahedron, 22, 2673.
- COULSON, C. A. (1939). Proc. Roy. Soc. A, 169, 413.
- COULSON, C. A. & GOLEBIEWSKI, A. (1961). Proc. Phys. Soc. 78, 1310.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.

DARLOW, S. F. (1960). Acta Cryst. 13, 683.

- Dostrovsky, I., Hughes, E. D. & Ingold, C. K. (1946). J. Chem. Soc. p. 173.
- Dowling, J. M., PURANIK, P. G., MEISTER, A. G. & MIL-LER, S. I. (1957). J. Chem. Phys. 26, 233.
- DUCHAMP, D. J. (1964). User's Guide to the CRYRM Crystallographic Computing System. Pasadena: California Institute of Technology.
- FAVINI, G. & SIMONETTA, M. (1963). Theoret. Chim. Acta, Berlin, 1, 294.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- GRAMACCIOLI, C. M. & MARIANI, C. (1965). Unpublished work.
- HAMILTON, W. C., ROLLETT, J. S. & SPARKS, R. A. (1965). Acta Cryst. 18, 129.
- Howe, J. A. & GOLDSTEIN, J. H. (1957). J. Chem. Phys. 27, 831.
- HUGILL, J. A. C., COOP, I. E. & SUTTON, L. E. (1938). Trans. Faraday Soc. 34, 1518.
- KEIDEL, F. A. & BAUER, S. H. (1956). J. Chem. Phys. 25, 1218.
- KITAYGORODSKY, A. I. (1961). Tetrahedron, 14, 230.

MARIANI, C., MUGNOLI, A. & CASALONE, G. L. (1965). Rend. Accad. Lincei, VIII, 38, 880.

MOSER, C. M. (1953). J. Chem. Soc. p. 1073.

- PAULING, L. (1960). *The Nature of the Chemical Bond*. 3rd ed., p. 260. Ithaca: Cornell Univ. Press.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746.
- POMPA, F., ALBANO, V., BELLON, P. L. & SCATTURIN, V. (1963). *Ric. Sci.* 33 (II-A), 1151.
- RAE, A. D. (1965). Acta Cryst. 19, 683.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.
- SIMONETTA, M. & CARRÀ, S. (1963). *Tetrahedron*, **19** Suppl. 2, 467.
- STREITWIESER, A. JR. (1962). Molecular Orbital Theory for Organic Chemists, p. 126. New York: John Wiley.
- WESTHEIMER, F. H. in NEWMAN, M. S. (1956). Steric Effects in Organic Chemistry, p. 529. New York: John Wiley.
- WHIFFEN, D. H. (1958). In Tables of Interatomic Distances and Configuration in Molecules and Ions, p. M125. London: The Chemical Society.

Acta Cryst. (1967). 22, 236

Structure Cristalline du Dichlorure de Cadmium Diformamide, CdCl₂.2 HCONH₂

PAR ANDRÉ MITSCHLER, JEAN FISCHER ET RAYMOND WEISS

Laboratoire de Chimie Structurale, Institut de Chimie, Université de Strasbourg, 1, rue Blaise Pascal, 67 Strasbourg, France

(Reçu le 20 juin 1966)

The crystal structure of bisformamide cadmium chloride has been determined and refined with threedimensional data using Cu K α X-radiation. CdCl₂.2HCONH₂ is triclinic with $a=8.37\pm0.02$, $b=7.26\pm0.02$, $c=3.77\pm0.01$ Å, $\alpha=93^{\circ}41'\pm20'$, $\beta=109^{\circ}07'\pm20'$ and $\gamma=113^{\circ}48'\pm20'$. Z=1. Space group: PI.

Fourier and least-squares methods were used to determine positional coordinates. The molecules of formamide are bonded to the metal by the oxygen atoms. The structure is built up from chains of octahedral $CdCl_4O_2$ polyedra, linked along the [001] axis. The two O atoms belong to two molecules of formamide lying opposite to the plane containing the Cd atom and the four Cl atoms.

Introduction

Par la détermination des structures cristallines des composés d'addition moléculaire $CdCl_2.2OC(NH_2)_2$ et $CdCl_2.2C_2H_5N_3O_2$ Nardelli, Cavalca & Fava (1957) et Cavalca, Nardelli & Fava (1960) ont montré que la liaison Cd-X est généralement assurée par l'atome d'oxygène dans les composés du type $CdCl_2.2X$, X désignant une molécule organique possédant des groupements C-O et C-N donneurs de paires d'électrons.

Le spectre d'absorption infra-rouge d'un composé d'addition moléculaire permet souvent de déterminer la nature de l'atome donneur lié au métal; l'existence d'une liaison métal-oxygène ou métal – azote entraîne généralement une diminution de la constante de force de la liaison C-O ou C-N et par là, une diminution de la fréquence v(C-O) ou v(C-N) par rapport à la molécule organique libre. Pour CdCl₂.2HCONH₂, le spectre d'absorption infra-rouge, enregistré en suspension dans le Nujol, ne permet pas de déterminer avec certitude si le formamide est lié au cadmium par l'atome d'oxygène ou par l'atome d'azote. En effet, la fréquence de la vibration d'élongation v(C-O) ne change pas par rapport à celle du formamide pur, à l'état liquide (Suzuki, 1960); la fréquence de la vibration v(C-N) augmente, au lieu de diminuer. Le Tableau 1 donne les fréquences des vibrations v(C-O) et v(C-N), du formamide lié au

Tableau 1. Fréquences des vibrations (C-O) et v(C-N)du formamide engagé dans CdCl₂.2HCONH₂ et du formamide non lié

Fréquences		
observées	$CdCl_2.2HCONH_2$	HCONH ₂
v(C-O)	1690 cm ⁻¹	1690 cm ⁻¹
v(C–N)	1350 cm ⁻¹	1309 cm ⁻¹